
Ms Resi Development Manual – Edition 2 (i)

Ms Resi Development Manual – Edition 2 – February 2009
(web links updated June 2012)

Mal Haysom

m.haysom@cartography.id.au

Abstract

 This manual contains information to assist developers to modify the physiological component of the Ms
Resi code. Ms Resi consists of two modules – the interface module and the model module – the latter contains
the core of the physiological code. To modify this module a developer will require a command line C++ compiler,
a text editor, some knowledge of the C programming language, and a more substantial knowledge of physiology.
The manual provides explanations and example modifications to guide developers. It provides contact details for
a suitable (and free) compiler and text editor.

Contents

1. Introduction...1

1.1 Notation...1

2. A walk through example ..2

3. Files that are used to build the model module ..3

3.1 ms_model_100.cpp..3
3.2 ms_variable.h ..3
3.3 ms_subject.h ..3
3.4 makefile.mak ..3

4. Making more significant changes...4

4.1 Inserting another display variable ...4
4.2 Rearranging the subject factors and display variables ...4
4.3 Changing the subject constants..4
4.4 Changing the model algorithms ..4

5. About trade..5

6. Managing multiple versions ..6

7. Coding Information...7

7.1 General ...7
7.2 Deviations from Appendix IV...7
7.3 Notation...7
7.4 Tracheal obstruction and bag code...8
7.5 Respiration dialogue box funtionality ..8

8. C++ syntax used in building model module ..10

8.1 The language ..10
8.2 The build process..10

9. References ..11

Appendix A – The MS Windows command line syntax ...12

Appendix B – The damp function ...13

Z:\ms_resi\documents\ms_development_2.doc Last printed 24/05/2014 14:44:00

Ms Resi Development Manual – Edition 2 1

1. Introduction

 The Ms Resi application code consists of two modules: ms_resi_200.exe, a module that contains the
graphical interface code and ms_model.dll, a module that contains the physiological code. The graphical
interface module has been built using Borland Builder 6. The physiological core module can be built from the
supplied source code, ms_model_100.cpp by using a free C++ compiler. This arrangement will allow
researchers, perhaps with a particular area of interest, to develop the physiological code without being involved in
the internals of the graphical interface code.

 On the whole, the core C++ code that is used to build the model module is a direct translation of the
Fortran code given in Appendix IV of Dickinson’s work [1]. It is strongly recommended that a developer has this
work to hand.

 The designers of the Appendix IV model are Dr. C. J. Dickinson, Dr. E. J .M. Campbell, Dr. A. S. Rebuck,
Dr. N. L. Jones, Dr. D. Ingram and Dr. K. Ahmed.

 In 1981-2 Professor George Havenith [5], then at the Theoretical Biology Group, State University, Utrecht
made some refinements to the Appendix IV code. He has made two reports on his work and the modified code is
available on the Chime Contributor’s web site [6]. These items also are strongly recommended to developers.
The changes made by Havenith will be termed GH code.

 Because the files that make the interface module and the files that make the model module can be
independently modified, each module has its own version number – currently 2.00 and 1.00 respectively. Both
version numbers are displayed at the start-up of Ms Resi.

1.1 Notation
 Within this manual file names, code extracts and command line entries are presented in Courier New
font. MS Windows menu paths and screen messages are printed in italics.

Z:\ms_resi\documents\ms_development_2.doc Last printed 24/05/2014 14:44:00

Ms Resi Development Manual – Edition 2 2

2. A walk through example

 As a demonstration of the process, let’s make a minor change to the model.

1. Download the C++ compiler and linker from Embarcadero Technologies [2]. Read the Supplementary
Information available from Embarcadero Technologies [3].

2. Install the compiler and linker. (The configuration files are available, see step 4.)

4. Make a ms_resi directory
 Unzip ms_resi_200.zip and ms_model_100.zip into this directory. The directory contents should include:
 makefile.mak
 ms_model.dll
 ms_model_100.cpp
 ms_resi_200.exe
 ms_variable.h
 ms_subject.h
 borlndmm.dll (Borland redistributable)
 cc3260mt.dll (Borland redistributable)
 cc3260.dll (Borland redistributable)
 rtl60.bpl (Borland redistributable)
 stlpmt45.dll (Borland redistributable)
 vcl60.bpl (Borland redistributable)
 bcc32.cfg (Compiler configuration file, move to C:\borland\bcc55\bin)
 ilink32.cfg (Linker configuration file, move to C:\borland\bcc55\bin)

5. Make backup copies of ms_model_100.cpp and ms_model.dll.

6. With a text editor edit standard version in line 30 of ms_model_100.cpp to modified by your name.
(The Bloodshed Software compiler [4] has a useful syntax coded editor. However, I have not been able to use
this compiler to build ms_model.dll.)

7. In Programs->Accessories->Command Prompt find your way to your ms_resi directory.

8. At the command line prompt enter make. The exchange should be similar to :

C:\ms_resi> make
MAKE Version 5.2 Copyright (c) 1987, 2000 Borland
 bcc32 -c -tWD -tWM- -X- -r- -a8 -k ms_model_100.cpp
Borland C++ 5.5.1 for Win32 Copyright (c) 1993, 2000 Borland
MS_MODEL_100.CPP:
 ilink32 /Tpd /w /aa /Gi /Gn c0d32.obj ms_model_100.obj, ms_model.dll,,import32.lib cw32i.lib
Turbo Incremental Link 5.00 Copyright (c) 1997, 2000 Borland

9. Run ms_resi_200.exe.

10. In Ms Resi key Alt-I (“I” for Information). A dialog box displays modified by your name.

 The process described in the box above has produced a new ms_model.dll. When ms_resi_200 ran,
she accessed this new module, and thus the modified by your name string was available for display. In section 4,
methods for making more significant changes to the model are presented.

Z:\ms_resi\documents\ms_development_2.doc Last printed 24/05/2014 14:44:00

Ms Resi Development Manual – Edition 2 3

3. Files that are used to build the model module

 Several files are required to build the module model.

3.1 ms_model_100.cpp
 This file contains code that constitutes the physiological core of the model. It also declares the passport
parameters, the subject factors, the display variables and other variables. The passport parameters (with the
exception of sex), the subject factors and the display variables use the structure variable declared in
ms_variable.h.

// --- variable structure ----------------------------––-----––––--------------
struct variable {
 char *dsn; // text description of variable
 float vlu; // the value of the variable
 float lwr; // lower limit for user entries or graphical display
 float upr; // upper limit for user entries or graphical display
 char *unt; // text description of unit
 };

 For example, in the subject factors array we find:
{"Packed cell volume", 0.0, 0.0, 80, "%"},
 #define PCV factor[21].vlu // (19)

 The entry above declares a user input variable Packed cell volume. The initial value (changed at the
initialization of the subject) of this variable is 0.0, the lowest value of this variable that Ms Resi will accept is 0.0,
the highest value is 80, and the units are %. PVC is defined as a macro substitute for the actual expression for the
value of this variable, factor[21].vlu. The (19) is the variable number in the Appendix IV code.

 In the list of physiological variables array we find:
{"Arterial pH", 0.0, 7.0, 8.0, ""},
 #define RPH display[17].vlu // (33)

 The entry above declares a display variable Arterial pH. The initial (soon to be changed) value of this
variable is 0.0, the lowest ordinate value of this display variable is 7.0, the highest ordinate value is 8.0 and the
variable has no units. RPH is defined as a macro substitute for the actual expression for the value of this variable
– display[17].vlu. The (33) is the variable number in the Appendix IV code.

 The other variables are required for the model, but not for user control or display. They are variables
internal to the model.

3.2 ms_variable.h
 This file contains declarations common to both the interface and model modules. The expectation is that
it will not be altered by a developer.

3.3 ms_subject.h
 This file contains the clinical codes used by the function that generates symptom messages. It also
contains the wherewithal to initiate the default subject.

3.4 makefile.mak
 This file contains the instructions that the compiler and linker require to build ms_model.dll.

ms_model_100.obj: ms_model_100.cpp
 bcc32 -c -tWD -tWM- -X- -r- -a8 -k ms_model_100.cpp
 ilink32 /Tpd /w /aa /Gi /Gn c0d32.obj ms_model_100.obj, ms_model.dll,,import32.lib cw32i.lib

Z:\ms_resi\documents\ms_development_2.doc Last printed 24/05/2014 14:44:00

Ms Resi Development Manual – Edition 2 4

4. Making more significant changes

 Since all the physiological code and the bulk of the physiological variables reside in the files that are used
to build the model module, there is considerable scope for a developer to make changes to the model.

4.1 Inserting another display variable
 This example, although perhaps physiologically meaningless, (I’m an instrumentation engineer ;-) will
illustrate some aspects of the interaction between the two modules.

 The aim is to display a new variable – the averaged pH of the arterial, tissue and venous pH values.

Step 1 – Declare the variable – circa line 286 in ms_model_100.cpp, the new code is in bold font:

{"Venous pH (of mixed venous blood)", 0.0, 7.0, 8.0, ""},
 #define VPH display[62].vlu // (34)
{"Arterial, Tissue and Venous average pH", 0.0, 6.6, 7.6, ""},
 #define RTVPH display[63].vlu // (new)
{"No display", 0, 0, 0, ""}

Note the array index of 63; it is an increment of 1 from the previous display index. We have also elected that the
display plot will range from 6.6 to 7.6.

Step 2 – Assign a value to RTVPH (the symbol allocated to our new variable) in the model – circa line 866 in
ms_model_100.cpp, the new code is in bold font:

M_END: RTVPH = (RPH+TPH+VPH)/3.0; // determine average pH before return to interface module
 return(item);

Step 3 – In the command line window run make to build the revised ms_model.dll. Run ms_resi_200.exe
and observe the presence of the new display variable, Arterial, Tissue and Venous average pH, at the bottom of
the display list. Observe that when this variable is selected the ordinate axis ranges from 6.6 to 7.6.

4.2 Rearranging the subject factors and display variables
 In the example above, the display variable, Arterial, Tissue and Venous average pH, appears at the
bottom of the display list. To be consistent with the alpa-numerical ordering it should be placed higher up the list,
after Arterial pool O2 content of blood leaving. The order of the variables can be rearranged subject to two
requirements.
 1) For the display variables list, No display, must be the last item in the list.
 2) The indexes in all the #define statements, for example, the “62” in
 #define VPH display[62].vlu,
 must be readjusted to maintain numerical order. For variables with alternate units, for example,
 #define SN2PR display[48].vlu // (105)
 #define AD_9 48
 the correction to the original index (here 48) must be done on both define lines.
 In addition, the order of the subject factors and display variables as they appear in ms_subject.h must
be rearranged for consistency.

4.3 Changing the subject constants
 The subject constants are defined in the function constant() (line 1108 in ms_model_100.cpp).
These constants are evaluated before each run of the model. For a developer they provide a painless means of
adjusting some parameters of the model. For example, C[75], defined as
 C[75]=(1.5+s_sex*0.2+(33.0-FITNS)/10.0)*WT*C[16]; // maximum stroke volume GH
relates heart stroke volume to sex, weight and (via C[16]) cardiac functionality. If a researcher was working with
a subject group where the cardiac capacity of its members was believed to be independent of their sex, the term
“s_sex*0.2“could be removed.

4.4 Changing the model algorithms
 Perhaps the reader could examine the changes made by Havenith [6] to gain an appreciation of the scope
available for changing the actual model.

Z:\ms_resi\documents\ms_development_2.doc Last printed 24/05/2014 14:44:00

Ms Resi Development Manual – Edition 2 5

5. About trade

 “I run a sort of import-export business; I guess you'd call it. Anything people can't get, I can.”
 Harry Smith (Humphrey Bogart) Sirocco 1951

 Some declarations in the source files for ms_model.dll have a trade specifier.

 trade int model(void); // Dickinson's physiological model (in ms_variable.h)
 trade variable height = {"height", 0.0, 95.0, 200.0, "cm"}; // (in ms_model_100.cpp)

The specifier trade is defined in ms_variable.h.

 #ifdef __DLL__
 #define trade extern "C" __declspec(dllexport)
 #else
 #define trade extern "C" __declspec(dllimport)
 #endif

 The result of this conditional definition is that the model-related files interpret trade as an export specifier
and the interface files interpret trade as an import specifier. This import-export business is required to achieve
linkage between the interface and model modules. Interference with the trade declarations will result in linkage
problems at run time.

Z:\ms_resi\documents\ms_development_2.doc Last printed 24/05/2014 14:44:00

Ms Resi Development Manual – Edition 2 6

6. Managing multiple versions

 Developers may wish to have several concurrent versions of the model. With appropriate
accommodations, file names, with the exception of ms_model.dll, can be changed to reflect different versions.
The interface module expects to link to ms_model.dll and will be distressed if it is not available.

 A straightforward way of managing different versions would be to create separate directories each with its
own copy of ms_resi_200.exe. Each Windows operating system has a search path algorithm for locating the
DLLs required by any application program. Typically this search path includes C:\Windows\System\ (or
C:\WinNT\System\). Hence some duplication of files could be avoided by putting the Borland distributables
(borlndmm.dll, cc3260mt.dll, rtl60.bpl, stlpmt45.dll, vcl60.bpl) in the appropriate directory
where ms_resi_200.exe will find them as required.

 The main source file, ms_model_100.cpp, may be renamed provided the appropriate changes (4
places) are made in makefile.mak.

Z:\ms_resi\documents\ms_development_2.doc Last printed 24/05/2014 14:44:00

Ms Resi Development Manual – Edition 2 7

7. Coding Information

7.1 General
 On the whole the ms_model_100.cpp C++ code is a direct translation from the Fortran code given in
Appendix IV of Dickinson’s work [1]. It is strongly recommended that a developer has this work together with
Havenith’s modifications [5] to hand.

 The quality of the translation varies (especially for conditional branches) as I became more familiar with
the Fortran syntax. The original text was scanned using optical character recognition – errors occurred. Some of
these errors I may have missed and some errors I may have introduced in the translation process. I am
increasingly confident that transcription and translation errors in the core of the model have been eliminated,
however checking against the original code is advised.

7.2 Deviations from Appendix IV
 Significant coding changes that have been made are itemized below.

7.2.1 The iteration period is fixed at 1 second (the Appendix IV code iteration period is variable from 2 to
10 seconds). One second is a convenient period for the graphical display process and is laughed at by
modern computers.

7.2.2 Within the core code, the pressure units are not selectable, but fixed as mmHg. This arrangement is
more convenient for Ms Resi who prefers to make her own changes. As a consequence SIMLT is not
present in ms_model_100.cpp().

7.2.3 The bulk of the main iteration loop code (that is the core of the model) is in the function, model(),
in ms_model_100.cpp.

7.2.4 The delay() function uses a different technique than the one that was used in the Appendix IV
code. The principal change is that the current version uses a look-up table, dly_dt, and an interpolation
function, interpol(), to determine the delay period in place of the algorithm used in Appendix IV. The
look-up table approach will permit developers to make changes to the delay/cardiac output relationship
more readily. The interpol() function was introduced into MacPuf by Havenith for other applications in
the code.

7.2.5 There are extensive changes to the I/0 code.

7.2.6 There are extensive changes to the code associated with tracheal obstruction and the collection and
rebreathing of expired gases in bags. Please refer to section 7.4.

7.2.7 Havenith’s physiological code changes have been incorporated (including the introduction of work
load and heart rate).

7.2.8 The code associated with the damp function/macro has been changed. Please refer to Appendix B.

7.3 Notation

7.3.1 Appendix IV page numbers are shown – // P 198. Code due to Havenith is noted GH. Code
changes arising from the revamped damp() function are noted TC.

7.3.2 Labels (where required) have been constructed from the Fortran line numbers by prefixing with
(usually appropriate) alpha characters. For example line 130 in the Appendix IV gases function is labelled
G130: in ms_model_100.cpp.

7.3.3 Symbols for the major variables such as PC2CT, TC2CT, DVENT, etc, etc have been preserved.

7.3.4 At the user interface the Appendix IV factor numbers are preserved. For example, factor 2 is
Inspired CO2 in both the current code and the Appendix IV model.

Z:\ms_resi\documents\ms_development_2.doc Last printed 24/05/2014 14:44:00

Ms Resi Development Manual – Edition 2 8

7.4 Tracheal obstruction and bag code
 In chapter 20 of A Computer Model of Human Respiration, [1] Dickinson discusses the code associated
with tracheal obstruction and the collection and rebreathing of expired gases in bags. As a result of the
necessarily strong interaction between the user interface and the respiration code, the MS Resi implementation of
this code differs markedly from the Appendix IV version, though the function bager() remains as a sort of
collection bag for an assortment of relevant code.

 User data entry in Ms Resi is performed by the respiration dialogue box, accessed via the respiration item
on the main menu bar. The display of the associated variables (not fully implemented) is done by the interface
module in the same manner as it for the physiological variables.

 Dickinson presents five respiration states.

 1. Closure of the glottis;
 2. Collection of expired air in a bag;
 3. Rebreathing from a bag;
 4. Rebreathing from a bag with CO2 absorber attached;
 5. Restoration of the status quo: glottis open, bag disconnected.

 In Appendix IV code these states are numerically coded in such a way as to allow the economies of
coding that were necessary in 1977. In Ms Resi code the states are macro defined in ms_variable.h as
presented below. The macros GTC, STD, etc are the values that PL, the respiration index, can acquire.

 // --- bag states --------------------------------
 #define GTC 9 // glottis closed
 #define STD 10 // standard situation
 #define CXA 11 // collection of expired air in bag
 #define RBB 12 // rebreathing from a bag
 #define CDA 13 // carbon dioxide absorber attached

 The function bager() is declared in ms_variable.h..

 trade void bager(int N, float *CA, float *CB); // deals with bag rebreathing

 The first parameter, int N, is a tag that used by bager() to determine the origin of the current call. The
function bager() may be called from two places in the interface-module code. These origins are defined by
macros in ms_variable.h.

 // --- interface module bager() origins -----------------------
 #define RUN 1 // run button click
 #define RSP 2 // respiration dialogue box

 The function bager() may be called also from places within the model-module code. These origins are
defined by macros in ms_model.h.

 // --- local bager() origins --––------------------------------
 #define MM1 11 // call from model() circa M781
 #define MM2 12 // call from model() circa M820
 #define MM3 13 // not allocated
 #define MM4 14 // not allocated
 #define MM5 15 // not allocated
 #define MM6 16 // not allocated

7.5 Respiration dialogue box functionality
 On acceptance by the OK button the respiration dialogue box code will set NARTI, RRATE, TIDVL, PEEP,
PL, BAGV, BAGC and BAGO as appropriate and call bager(RSP, NULL, NULL) before closing.

 My current implementation of the respiration code is incomplete and faulty. However, the process is
sufficiently intact to illustrate its intended operation.

Z:\ms_resi\documents\ms_development_2.doc Last printed 24/05/2014 14:44:00

Ms Resi Development Manual – Edition 2 9

 For example, assume that the user has elected to close the glottis. When the OK button is clicked in the
respiration dialogue box, PL will be set to GTC and bager() will be called before dialogue box is closed. The
switch code in bager() will recognize the origin of the call (via the RSP tag in the call) and that the glottis has
been closed (as PL is set to GTC). On the next user run click the change in PL and those made by the bager()
code will be effective.

 case RSP: // from respiration dialogue
 if(PL == GTC) // if glottis closed
 REFLV = VLUNG; // remember lung volume
 if((PL==STD)&&(ppl==GTC)) // if glottis has just been opened, breathe air
 {
 VLUNG = REFLV; // restore all to normal
 FIO2 = 20.93; // bag stays filled as it was left
 FIC2 = 0.03;
 }
 // other RSP situations to be placed here
 break;

 When the user elects to reopen the glottis by selecting standard conditions, the resulting call to bager()
that occurs when the respiration dialogue box is closed, will again result in program flow through the RSP case.
However, the new state of PL (now STD), together the previous state of PL (maintained by bager() as ppl) will
result in the appropriate program flow within the RSP case.

Z:\ms_resi\documents\ms_development_2.doc Last printed 24/05/2014 14:44:00

Ms Resi Development Manual – Edition 2 10

8. C++ syntax used in building model module

8.1 The language
 The C programming language was developed by Dennis Ritchie and Brian Kernighan. They published
their classic work on C in 1978 [7]. The language was formalized as ANSI C in the late eighties. The object
orientated language C++ (“C with classes”) was developed by Bjarne Stroustrup over the period 1983-1985. C++
is a superset of C.

 Although managed by a C++ compiler, the code used to produce ms_model.dll does not involve
classes and is essentially traditional C. A developer unfamiliar with the C++ syntax might be well served by using
one of the many books available on C (rather than C++) as a reference.

8.2 The build process
 Traditionally C source code is compiled to produce object code. In the compilation process header files
may be included in the source files. Object files produced from the source code are linked with library files to
produce executable code. With more sophisticated operating systems, the concept of dynamic linked libraries,
DLLs, was introduced. Dynamic link libraries (ms_model.dll is one) are linked to the application program
(ms_resi_200.exe is one) at run time. There are advantages to be gained in memory usage and maintenance
flexibility by this arrangement.

 The DLLs can be produced by much the same process as described in the first two sentences of 8.2.

Z:\ms_resi\documents\ms_development_2.doc Last printed 24/05/2014 14:44:00

Ms Resi Development Manual – Edition 2 11

9. References

[1] A Computer Model of Human Respiration, C. J. Dickinson, MT Press, 1977

[2] Embarcadero Technologies downloads, https://downloads.embarcadero.com/free/c_builder (accessed
03/061/2012)

[3] Embarcadero Technologies, Supplementary Information (step by step installation)
http://edn.embarcadero.com/article/21205 (accessed 03/06/2012)

[4] Bloodshed Software Dev-C++ 5 http://www.bloodshed.net/ (accessed 03/06/2012)

[5] Loughborough University, http://www.lboro.ac.uk/departments/lds/staff/professor-george-havenith.html
(accessed 03/06/2012)

[6] It appears that Mac Models material is no longer available at UCL CHIME, so I have posted the documents on
this site. (Well, after all they are thirty years old.) Havenith report part 1, Havenith report part 2,
MACPUF 17 December 1981 Fortran code.

[7] Kernighan, B and Ritchie, D, The C Programming Language, Prentice Hall, 1978

Z:\ms_resi\documents\ms_development_2.doc Last printed 24/05/2014 14:44:00

https://downloads.embarcadero.com/free/c_builder
http://edn.embarcadero.com/article/21205
http://www.bloodshed.net/
http://www.lboro.ac.uk/departments/lds/staff/professor-george-havenith.html
http://home.vicnet.net.au/%7Emsresi/documents/havenith_report_1981_part1.pdf
http://home.vicnet.net.au/%7Emsresi/documents/havenith_report_1982_part2.pdf
http://home.vicnet.net.au/%7Emsresi/documents/MACPUF17december1981.for

Ms Resi Development Manual – Edition 2 12

Appendix A – The MS Windows command line syntax

 The Command Prompt program (Programs->Accessories->Command Prompt) was introduced to support
MS-DOS applications that do not run under MS Windows. In essence it is MS-DOS without the short file name
format limitations. However, since the bulk of the commands can be more readily implemented in the MS
Windows environment, a model module developer need be familiar with only a few commands to operate
effectively.

 To change the drive, enter the drive letter followed by a colon (user entry in bold font).
 C:\Documents and Settings\ADeveloper>Z:
 Z:\>

 To change the working directory, enter the path.
 Z:\>cd ms_resi\ms_dallas
 Z:\ms_resi\ms_dallas>

 A back slash changes the working directory to the base directory.
 Z:\ms_resi\ms_dallas>cd\
 Z:\>

 Enter the program name to run the program.

C:\ms_resi> make
MAKE Version 5.2 Copyright (c) 1987, 2000 Borland
 bcc32 -c -tWD -tWM- -X- -r- -a8 -k ms_model_100.cpp
- –
Turbo Incremental Link 5.00 Copyright (c) 1997, 2000 Borland
C:\ms_resi>

 The Command Prompt interface has some useful features.
 The up and down arrow keys allow a user to scroll through past commands.

To copy text from the display, use the menu via the icon in the top left corner, edit -> mark. Mark
the text by holding the right mouse key and sweeping. The enter key copies the text to the clip
board.

 The output of commands can be piped to a file. For example, to make a file of directory contents.

Z:\ms_resi\ms_dallas>dir > list.txt

We can view the list.

 Z:\ms_resi\ms_dallas>type list.txt
 Volume in drive Z is Work Disc
 Volume Serial Number is 3865-1732
 Directory of Z:\ms_resi\ms_dallas
15/11/2009 11:37 <DIR> .
15/11/2009 11:37 <DIR> ..
15/11/2009 11:37 0 list.txt
15/10/2009 14:55 718 makefile.mak
10/11/2009 22:24 69,628 ms_model.cpp
10/11/2009 22:24 640,000 ms_model.dll
 - –
10/11/2009 22:24 3,732 ms_model.lib
10/11/2009 22:24 657,991 ms_model.obj
10/11/2009 22:23 4,279 ms_resi.dsk
10/11/2009 22:22 284,672 ms_resi.exe
 41 File(s) 4,889,782 bytes
 2 Dir(s) 18,109,349,888 bytes free

 A help system is available.
 Z:\ms_resi\ms_dallas>help

Z:\ms_resi\documents\ms_development_2.doc Last printed 24/05/2014 14:44:00

Ms Resi Development Manual – Edition 2 13

Appendix B – The damp function

 The damp function serves two purposes in the model code. It models the mixing of fluids within a pool
and is used as a stabilizing tool.

Fig 1.

 A simple model of concentration changes within a fluid pool is shown in Fig 1. A step change in
concentration from zero to A has occurred at the input at t = 0.

 In an incremental time, dt, the amount of concentrate entering the pool will be AFdt ; and amount exiting
will be yFdt . Thus the change in concentration in the incremental time will be:

V

yAFdtdy)(−
= equ. 1

 that is 0=−+ A
dt
dy

F
Vy equ. 2

assuming the initial concentration of the pool to be zero then the differential equation, equ 2, has the solution:

)1(τ
t

eAy
−

−= equ. 3

where t= V/F. This parameter is known in some disciplines as the time constant of a single pole low pass filter.

 The response of a low pass filter in the time domain to a step change in input is shown in Fig 2. After a
period of one time constant the output has reached 63% of the span to the final value.

Fig 2

 In a discrete time situation a low pass filter can be implemented by successive implementations of:

N

inputcurrent
N

outputpreviousNoutputcurrent +
−

=
)1(

 equ. 4

Where N is greater than 1, and N X (the iteration period) approximates to the time constant of the filter.

Z:\ms_resi\documents\ms_development_2.doc Last printed 24/05/2014 14:44:00

Ms Resi Development Manual – Edition 2 14

Equ 4 is of the same form as Dickinson’s damping equation, [1, p27, equ. 5] – a proportional sharing of the
current value and the input value.

1

)(
+

+
=

Z
contentgasoldenttedgascontnewcalculaidealZcontentgaseffectivenew equ. 5

The relationship between N and Z is:

 11
+=

Z
N equ. 6

Conveniently the iteration period in Ms Resi is 1 second, so N is the time constant of the filter in seconds.

 In the Ms Resi implementation of the function,

float damp(float current_input, float previous_value, float time_constant),

the value of the time constant is displaced by one (this simplifies conversion from the Appendix IV code) such that
the minimum valid value for the time constant is zero, equating to no additional delay besides the intrinsic delay of
a finite sample period.

Z:\ms_resi\documents\ms_development_2.doc Last printed 24/05/2014 14:44:00

